Diamond-Structured Photonic Crystals with Graded Air Spheres Radii
نویسندگان
چکیده
A diamond-structured photonic crystal (PC) with graded air spheres radii was fabricated successfully by stereolithography (SL) and gel-casting process. The graded radii in photonic crystal were formed by uniting different radii in photonic crystals with a uniform radius together along the Г‑Х direction. The stop band was observed between 26.1 GHz and 34.3 GHz by reflection and transmission measurements in the direction. The result agreed well with the simulation attained by the Finite Integration Technique (FIT). The stop band width was 8.2 GHz and the resulting gap/midgap ratio was 27.2%, which became respectively 141.4% and 161.9% of the perfect PC. The results indicate that the stop band width of the diamond-structured PC can be expanded by graded air spheres radii along the Г‑Х direction, which is beneficial to develop a multi bandpass filter.
منابع مشابه
Geometrical Influence on Photonic Bandgap of Three Dimensional Chalcogenide Photonic Crystals
On the basis of Maxwell's equations and a plane wave expansion method, photonic band structure is computed for 3D chalcogenide photonic crystal with diamond lattice. The geometrical influence on the photonic bandgap is studied for three dimensional chalcogenide photonic crystal of diamond lattice for both chalcogenide spheres in air and air spheres in chalcogenide background. The air spheres in...
متن کاملStudying Focusing Properties of Graded Index Photonic Crystals Made of Material with Different Refractive Index
In this paper we investigate focusing properties of graded index (GRIN) photonic crystal (PC) structures which are composed of different materials with different refractive indices. GRIN PC structure is constructed from air holes in dielectric background. The holes radii are varied in the normal direction to the propagation in such a way that a parabolic effective refractive index is produced. ...
متن کاملFragility of photonic band gaps in inverse-opal photonic crystals
Inverse-opal techniques provide a promising routine of fabricating photonic crystals with a full band gap in the visible and infrared regimes. Numerical simulations of band structures of such systems by means of a supercell technique demonstrate that this band gap is extremely fragile to the nonuniformity in crystals. In the presence of disorder such as variations in the radii of air spheres an...
متن کاملLarge omnidirectional band gaps in metallodielectric photonic crystals.
Using a finite-difference time-domain method, we study the band-structure and transmission properties of three-dimensional metallodielectric photonic crystals. The metallodielectric crystals are modeled as perfect electrical conducting objects embedded in dielectric media. We investigate two different lattice geometries: the face-centered-cubic ~fcc! lattice and the diamond lattice. Partial gap...
متن کاملInvestigation and Comparison of Light Propagation in Two Graded Photonic Crystal Structures
In this paper, we study two different Graded Index (GRIN) photonic crystal (PC) structures which are named as structure type I and type II. The PC structures are made of the square rod in an air background. To design a GRIN PC structure the lattice constant has been altered in the direction transverse to propagation. We investigated focusing effect and waveguiding behavior of electr...
متن کامل